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ABSTRACT

We investigate the properties of low frequency (UDZSUJ?c)
transverse waves in a two-fluid solar wind having a radial
magnetic field and radial streaming velocity. In order to
examine what effects this streaming medium has on the waves,
we decompose waves which are assumed to be linearly polarized
into left and right circularly polarized waves. We compute
analytic expressions valid to first order inw/uwWee for the
radial amplitude and phase dependence of these constituent
waves. We show that after travelling a distance Ar, these
waves have different amplitudes and phases-. The former result
causes their superposition to become elliptical, rather than
linear. The latter causes the axis of the ellipse of polarization
to rotate through a well-defined angle. Analytic expressions
are ~htainad for the eccentricitv of the ellipse and for the
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in which the plane of polarization of a linear polarized
wave rotates, we denote the effect as generalized Faraday rotation.
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CHAPTER 1

INTRODUCTION

ASlnce the formulation of solar wlnd theory (Parker, 1958)
much effort has been dlreoted towalds understandlng perturbatlons
~in the eteady coronal expansion. - waves, discontinuities,
turbulence and shocks are observed perturbatlons in the steady.
flow of the solar w1nd This thesis concerns the- flrst of these
phenomena, waves. We undertake a theoretical 1nvest1gatlon of
the propertle of transverse field and plasma perturbatlons in
the constant radlal flow of a tWwaiund solar w1nd. Observationally,
the presence of such transverse waves has‘been firmly demonstrated

(Belcher end Davis, 1971). As consequences of'thie study we
shall obtain agreement with previously investigated amplitude
Aeperdance of franeverse FWuctuatwonq for a one-fluid solar
wind (Parker; 1965, Belcher, 1971), and obtain new results
'predicting the}generalized Faraday rotation of low freguency
" transverse wavese'. |

The expaﬁding solaltcorona is a hyolomagnetlc configuration
which is stable with respect to small perturbations. With the
advent of direct observations of solar wind fluctuations
(Bridge et al. 1964 Coleman et al., 1963, 1966, 1968,

Neugebauor and Snyder, 1962, 1065, 1967, Siscoe. et al., 1968),

Wcharacterlstlc features contalned 1n Lhe plasma and field

fluctuations emerged. It seemed plausible (Dav1s,v1966) that

observed fluctuations could be caused by propagating Alfvén ox



rmagnetoacoustic'waves. A thorough Study of SpeCtrdl and cross-
spectral analy51s of Mariner 2 p1asma and fleld data by Colemdn
(1967 1968), 1ndlcated that outwardly propagatlng Alfven ‘waves
could account for many of the observed fluctuatlons. Thls,
tstatlstlcal approach neither gave patterns of occﬁrence noy
explicit examples of wave forms, howevel. Untlland Neugebauer
(1968) were the first to identify a.specific example of a
quasi—periodic Alfvén wave. Belcher, Dav1s, and Smith (1969),
in a preliminary analy51s of Marlner 5 plaqma and field data
identified outwardly propagating Alfvén waves as frequently
occoring phenomena, although these waves were mainly non-
sinusoraai and aperiodic.

A comprehensive study of Alfvén waves (Belcher et al., 1969,
Belcher and Davis, 1971), suggests that the outwardly propagating
waves observed primarily in high velocity streams and on theéir
tralllng edgc are remnants of ‘a broad spectrum of MHD waves
jgenerated inside the Alfvénic critical p01nt (Hartle and
Sturrock 1968) ThlS supports Parker s idea (1965) that one
can listen at 1 A.U. to the noise gentrdteo at the Sun. Hollweg

(1972) suggests that super—granulation patterns generate Alfvenic
disturbances which propagate upwards through the photosphere.
‘Parher s suggestion (1965) Lhat waves do work on the wind led

’Belchel (1971) and Alazakll and Coutur1c1 (1971) to lofOLmulatc

the basic solar w1nd pwoblemrfrom the p01nt of view of a new
energy source - Alfvén waves. These waves propagate in and

‘are convected by the streaming medium and could play a principal



role in the fast, hot,.tenuous winds that sometimes come from B
the active Sun. They could accelerate the wind and. heat it
upon dissipation. vIt should be:noted that the Alfvén mode is
the only hydlomagnetlc wave which is not strongly Landau damped
'(Barnes, 1966, 1968), so that the longer wavelengths observed
at 1 A.U. are most probably of solar origin.‘

Other causes of fluctuating phenomena may be due to the
differing temperatures in coronal regions.' Different-
temperatures in leglons on the Sun lead to dlfferent expansion
rates for coronal gases. The colder regions expand more slowly
than the hotter ones, so that hot'gas may eventually overtake
cool ges.' ThisAleads,to_compression, discontinuities;rand‘
wave qeneretion as these two streams dinteract (Parker, 1963,
Sarahbai, 1963, Lee, 1971). The large velocity difference
provides the energy to drive wave fluctuations (Jokippa ana -
Davis, 1269), altthough the prédominance of purely outwardly
'_profagating Alfvén waves is not adequately explained in this
mannexr (Belcher and Davis, 1971). » Coleman (1968) suggests that
the large scale shear resulting from valyxng w1nd velocity
leads to turbulence in which the energy of_the shear cascades
down through a hierarchy of eddies to some very small scale at
which d1s51patlon converts the fluid motion Lnto heat. The

1nterostcd rOQder may pulsue furthel dlscu591on of these two

dlfferlng points of view in Parker (1969) Blast waves from

‘sudden coronal commencements generate waves (Parker, 1963) as



do finite amplitude Alfvén waves when. they are incident upon:
shock waves (Scholer and BelcheL; 1971);

The present study investigates the problen of low frequency
transverse wave propagatlon in a solar w1nd hav1ng two spec1es,
‘protons and electrons. We seek the wave amplitude ‘dependence
~as a function of distance from a chosen.referenCe level. We do
not 1nqu1re about the mechanlsm of wave productiéon, but rather
assume that at the reference level r, we have llnearly polarlzed
waves of a given amplitude. We assume that beyond rq there is
neither subseguent wave generation nor ane’damplng into thermal
moﬁionﬁ As these waves propagate in and are oonvected by the
two-component solar wind, we examlno what effecta the streaming
medium has on their propertles. We decompose the l:nearly
nolavized waves into left and right handed circularly polarized
waves, and focus our attention on the properties of these
‘constituent waves. VWe shall see that as the right and left
" circularly polerized waves propagate in and.are convected to.
‘larger r,'thelr respective amplitude and phases behave in different
ways. Thus after a distance Or, we no longer have linear
polarization, but, rather elliptioel polarizetion with the axis
of the ellipse of POlarlZaLlOD turned through a well-defined anhgle.
Analytic expressions will be obtained for the amplltude and phase

_dependence of the nghL and left handcd waves, and fox the angle

of rotation. In analogy with regular Faraday rotatlon, in whlch

there is no such amplitude change, we denote the effect as

. generalized Faraday rotation.



THE DIFFERENTIAL EQUATION FOR" ELLIPTICALLY

POLARIZED WAVES IN A TWO-FLUID PLASMA

- For a two-component plasma with magnetic field B, the
relevant equations of motion and the apprépriate ‘Maxwell's
equations in the presence of a spherically symmetric gravitational

potential % are

R0 (?.J\-JJS—\] = L Axé -\—ﬂ e—é -%P -\ ﬁ% : (L)
flelat ® 7 P CTp AT S A S -
3 | - - o '
g{:m?\’)‘, + memf,\}?":o (2)
N =2 i -‘. _ -
pise o T NN O - DT it PN
e Lros v - v e~ e tete - (3)
2 e+ R Ve =
ot MeVle + N Ml Ve =
A C(4)

cAR = 4?(3‘,@6\ @%_
. | (5)
CIE = - B

k.

_ (6)
4R =0
(7)
where ;; Y :V* N
' d? - lt;\az ‘4‘._’ QQ: -—“\n,_ee v e ' ‘ (8)
and | ‘ |
. @ = “GL(Y\S\!N

(9)
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In the above tquatlons the supscript p (e) refers to protons
(electrons) and n refers to the number den51ty. We assume that
there are no collisions between species and that the respectlve
‘Pressures are scalar quantltles. In the one- fluld MHD llmlt
.thes equatlons reduce to the set used by-Belcher (1971) in
solving for the WKB wave amplitudes.
We assume that our plasma parameters %, 6, and E are pertur-
bed due to the’ presence of short wavelength transverse waves.
Denoting these perturbations by gB, %V, and 5r we further assume
that they are superimposed upon béckground.conditions of radial
Streaming and a rtedish magne+ic fueld. We also assswne that the
- propagation vector of these dlsturuances is parallel to the back-
ground field. It will be shown that thu:se waves locally obey the
standard two-fluid dispersion relatlon for transverse waves. In
analogy with the onevﬁluid case (Belcher, 1971), we will solve
for the weve amplitudes as a function of r using the WKB approx¥
imation that wave quantities valy on a scale much smaller than
the scale height. We confine our analysis to the equatorial

plane of a spherical coordinate sySLem. Consistent with other

~ workers (Yeh,; 1970, Hartle- -and -Sturrock, - 1068),7we assumo. equal

number density np =.n_ = n to preserve charge neutrality of
E ] : ) - ~ - [N
the plasma and equal radial streaming velocity Gp = Ve = V to

preserve charge neutrality of the Sun. jThe'radial conponent of

—hn : . N
E arises due to a small charge separation, insuring the absence



of a net fow of charge from the Sun.

We thuS/look for wave solutlons to (l) thrdggh (é) of the
form ¢ |
: \l(\"\\" *«%V (et ) +%\1 (\"t)c’P

R(e) & + §8° (vt\e -%%% (padp
E Bl € « SE° (1) & + B (q’dép I | (11)

To solve for the first order WKB wave amplitudes, we work

LWL‘CL ‘

with the transverse components of (1), (3), (5), .and (6). Since
B o —t . . . .
.QP- and Q@ have only radial components, our eguations then

reduce to the following
\
%?-\
a
%\x

e et
> v oS\g mc(%%\x NERT) +% % s,

4"51

e qpt

\fﬂ

£ 208 - (\1%@ B o)
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b{_%\} \\lb\,\@%\\ = (\J%% BQ\SQ) = %EéP
-2 w3B% - dnve ( %\1 ~ Ve 5 * %%E

52
Qb,é A%B Cb 1 (14)
T 20987 = Ame (52 -8l ) + 23
1D pEfe L3 gR®

%’B\“\%E < fe BT | ' ‘ (
1D oSt - -L 2 sed o * B
‘05“\«‘%\‘ e %t%g S |

It is convenient to define the following variables

IRT = %%@Js'l%%&? ,
S - ES e SES | - ae



It will be seen (Chapter 4) that this choicé associate_s the

, 4

upper (lower) sign with the left (rlght) handed polarized wave.
. Ve )

in thlS equivalent foz.mulatlon, equatlons (12) through (15)

become

B %\lt v o 4 gt ' .
=4 4+ Y _,_\n%“ ‘t\u:) %“ \C\J ‘*—._@__ e (17)
ot Car T ° WFC‘%% . '\mF%»E_ f °
YUY e Lo QU sielsRtieset Lo
< Qe B \ﬁ%\\e I—m‘)c"%\xe * el RTLE £ =0 '
. 3 s ~— = = 1
ot ¢ or fc me% (18)
e - T B N ' |
MRE A AR~ = :
A A (19)
N \(Q- Q \O%B ~bqrge. %\l -Vg 5 < %E 20
wnere u;?c = \\;;,C ana UC’ecf" I;x;;g e biie protinoand cloon

cyclotron fraguencies respectively.

The eikonal approx:unahon (Velnbelg, 1962) coﬁsists in assum-
ing that the spatidl dependence of the quanh.tles S\X %\)e ,%E’
ahd %B” 15 contained in a common factor exp (i S (r)), We thus

set

. :%“\; L(%%(QB wfi\
R | (21)

B - RT

" with %\3? R %E‘ , and 3_»% to ‘be determined. Defining
& A : | ‘
)= o
K™ = 3%; NN | (22)
WAL : -

and inserting (21) into (17) through (20) we obtain
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(~tm+\! k" uJ \QNT pieVopt e qpt | ©(23)
i B% Pt '\-m %Bl ﬁ]}E\ = O

(—tu.n\h iUJeC-»T:) %\)e*\ Y '@} %B“*e %E% \

mCe oo (24)

Aot : S A SR . -

FCKTRE 2 ‘% e -1l =0 - (25)

ToKt %\BE A \e e L |

FCKT BB, %B ZHWQ%W e g v dET = 0. (26)

Le£ the scale length over whieh the unperturbed‘quantities vary'
be h, which is of the order r. Then coﬁparing the terms'V%Nt[v
and\MK“jg\\ in (23) ana (24) we note that the ratio is X [\
where )ﬁ:.Zw[Ki- . We assume that h »>\ so that this ratio is
mﬁch iess than l.' Hence we may drop Vzﬂ - with respect

to “lKiﬁbﬁf in order to obtain an equztion correct to zeroth
order in X? h . Similar reasoning in (25) and (26) suggests
that we drcm>£\Q%E?}V and ﬁic%ﬁf’? respectively.>.We thus obtain

' &
the following set of equations correct to zeroth order in k‘[vL

Q.

(*‘Uz“r\)\K +\UJ S = e\ *& S o
\ \\ \m Q% \ e_\o[ e (27)
3 M
(x\DN\\\ ) C)%\) + e\ =
e =W %% T, % (28)

-4 ..
TOKESET Jiw %Bf - D

—~
N
AU

~

| . A .
V'S %%T: Amwe%\)é\ *Aﬂ\"\’)ﬁlg\\"el +1\.0%E':1 e

(30)



.10

" For a twoecompopeﬁt'plasmaF the,Alfvén velocity is

\, - - B

14’\T‘ﬂtme+‘me\ ETT_P - (31)

and the plasma frequency is

2 | \ R
-t (4L .
Y Aﬂme Me mg - (32)
. i K

In order to obtain a dispersion relation for K™ in a two-fluid

plasma, we set the.determinant of (27) through (30) eqdal to

‘zero. Using (32) we obtainv

(UJ-KE\)):UJ?J(LQ—\?\HLL)“ (- 7‘(&(‘33 UJ e (33)

From the definition of the index of refraction we obtain

W0* (13- K3 00 (017 & \mec\

We note that there are two resonances occuring at UD K+V uJ?c

W (w) = C (V“\\ Sl - U‘) (UJ K7 XZ. oG4

and at d)\(“ UJeC . This can be easily understood if ye- trane;w‘
form to the frame of reference moving at the non~relat1v15t1c
wind velocity V. The frequency measured in this frame is the
Doppler shifted freguency UJ~M}WJ§LU%. - This immediatel? follows
from the Lorentz transformation in the non~relativiétic'limit.
The Qeeohehceﬁ occur when the electric field vector of the
right (left) polarized wave (otaies with Lhe same velocity as
the protons (ele trons) in their cyclotron rotation about B.

| We can further exploit the elcgance of the Lorentz trans

) ‘w, g, &
formation (Olbert, prlvate commun:catLon) to obtaln agle ment.

.

between (33) and convcntlonal two-fluid dacper51on relatmons

(Van Kampen andi Fc1derhof£,,l967) by tha subutlfutlonﬁﬂ K V\ qu.v

oot J':r‘,;
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Furthermore in the frame co—mov1ng with the ‘wind velonlty v it
is a qua;Lghtforward matter to-obtain Lk) (\( \\3 from (33)
under the assumption that the phase velocnty is much smallexr
than the speed of -light c. This antlclpates the results (58)
and (66) in Chapter 3 and, for contlnulty, will not be given here.
Hav1ng solved for the dispersion relation correct to zeroth
order in ?l\;:. we now seek ‘to solve for our unknown amplitudes
%\\\t, %E% ; and %%?“a 7o' accomplish this we follow the method
of Weinberg (1962) which involves _retaininglterms ro first erder

in hu in equations (17)through (20‘). We write

%Qﬁ (%\\*‘ N )
' S‘ \
NS (%\3 .&e\ QL( o wﬂ

il

t

= N , - (35)
CRETs (REF gy
where %\X Qc\?) , and %E satlsfy (27) through (30), and sub-
stitute these expre551ons into (17) thlough (20) This process

ylelds , ,
o ot | * '___-_ \G\) =
(=1 t\uaf,GB%\l?l %% ‘%e *\\ (%\XQ!-\‘%\\?lB

\“ﬂ M,C
SR eSS ) e

o = i Y Voo ; -
( +\£+ @e& Bley * \f% %% J'VQYIKQ \1 (%\Xe\*«%\le?)
~\(~‘ (%\e\ + %\)Q—L§

~ ot V - |
% QK %E m%% =% 1C~('%E 3T \+' .__(%E,"_J«%EE\

67

(38)
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7Ok 8B - 4mne SV, + A SVe, +iw Ve =32 (6874887

where we have used (27) through (30) in the above. The. firSt‘
" conclusion to be drawn is that %\32 ' %E , and %% are smaller

A + :
than %V %E", and %% , respectively, by a factor k°h, where

h is the scale length w1th1n which the quantities vary. For
exampleJ from (36) we group the %\?lterms and compare them
with corleepondlng terms in %\32;\ under the assumptlon h~r.
Doing this we obtain k h%V N,%Vpl- . Thus if k hyl , that is |
>\/h & 1, we WJ.ll be justified in dropplng the %\\2 . SE and
%E to first order in >\/h on the right hand sides of (36)

through (39). 'This is just the WKB appriximation. We now have

(o ..WW ;;W‘Tf,)%ué% . Y . | ;—\%« Sﬁ:'-‘%‘:{t \;;‘-%\0\1?7 (40)
o .("’N) ":\).‘K{:’i.‘u‘)eQ%VZz i;%%%z ;%gtﬁ;—\:g, Ag\ﬁ-\{{_g\::w (41)
o O | "—im%%i 70 gE er\QB %E “‘"CSE\ (42‘)
=4 he%ﬁg_ Z&Tme%\l;_ T c\fge*; Hm%éz:;{c}lg%*; 1C%§*(43)
- o U W

C.
. where we have written the left hand sides of the equati‘oné in

matrlx ~like form in anticipation of the next step. In order L Qs
. -‘.

-

obtain a single d¢£terc>11t1al equqtlon involving only B\l‘ P %E.I ’

and % \73; we el ir_g} ]

fate the quantitj_.es %\12', %T:l, ‘and %Bz_ from
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(40) through (43) by using the. technique of matrix symmetrlzatlon
of Weilnberg (1962). Let us view (40) through (43) as a matrix

' equétion of the form

_/—\X& :BX‘.{ .(-%4)

where
%
_ b
>‘<9 = | BN, >< ;
) K '
. .
4
e
/-\\L)"<-\)\\4 '\'\\Ur ) ;lE\Hm?Q ‘elm?\
A . o -\\DJ«\)\\{,,NA% "-t'\e\H‘meC el |-
' o o LW pext
~hmee e T okt W
S\ O
R/ e ©
| R\
O .\)z;v © o (45)
- 6 o © I
O O Filesic
et
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Since A is not symmetrlc, we premultiply hoth 51des of our
equatlon by another matrlx C, so that the resultant matrlx
" C A is symmetric, Trlal and error has shown that we should

choose C in the following manner:

4nnm[, Q o -0 ,
C> = G bt © O ) (46)
o o) 1 +ivlet o
O o gwvle 4

. We thus obtain the following matrix equation

Atiam ( w +\M’ J”“)fc o 1i4ﬂ\ne\l ~dtne D) g;.
o * \ *
S 4“"‘“%( TR Erio) _\Afrwe~ ke Ne,
- | \ o A
T Vhmnel +idve > A -V 2o Ww X
& < WK RCKT 2 %81
: - ' 4 . A
—Amivie drne A :c«';\i%a WV | NNy |

-Wmm (\ St ) %\\g‘

0 S
' (47).
0 B
SE

" We now have (40) through ‘"('4'3")” ':i:ri ‘terms of symmetric matrices. =

penoting C A = A and C B = B' we have A
{ -7 With A!. = Al : »
B X, L A (48)
and B‘ = B!.
1] JL
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Premultlplylng (48) by the trangposed vector

X

»XT ‘*(%“i QG\)e( Qo% %T-_ ) w9

yields

\

T‘l~7- T oo
LAY -X BE (s0)

Taking the transpose of both sides gives

e W - T _
~ >\ 4 S (51)
XOANX - X, BX, o
But the left hand side of (51) is zerc bY'virtne of equations

(27) throeusn (30}, leaving as with e single &lfﬁenemt;al e?uatLan

in the unknown amplitudes %\)?‘ ’ %\e\ g %Y. ’ and %E

p11c1ty of noLatlon we now drop the subscrlpt 1 on our unknown

For sim-

' amplltudes Performlng the 1ndlcated matrix multlpllcatlons

on the rlght hand Slde of (51), uslng (47) and (49), ylelds

O= -—Z\‘W\f\m\]%\ -3\5? ArTT\’h"ﬂ\’ (%W \ IWV\H\%\ “%\5
,’..—‘\~Trmne~ (%\@ SR égg;i (%@;) choE" 2 gﬂg*

%¥ SE 1 iSR! 25E" Jf\c%% e
-\ %E+ 2 2\:: (%g»)

‘mu(52lﬁw_;t,_
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We thus obtaln a 81nglo differential equatlon 1nvolv1ng the unknown

, amplltudes S\'P s %WM, SE , and %% and their derlvatlves. . In

7
order - to- solve it, we must relate Lhe amplltudes to one another.

This is accomplished by choosing %ES as the independent amplltude

in (27) through (30) and expressing the other amplitudes in terms

of it. This process yields the followinq~rela£ionships between '

the amplitud@s

-3 = L Kf\w
H_ n =KV

LWee

N

7L o

- (53)

AN

By substituting (53) through (55) into (52) and using the dispersion

relation (33) to obtain an expression for the phase veloc1ty ®E s

T we can solve (52) analytlcally “to first order in’

wavelength oso|L.d|s ng of aluitraly fr

“for short ~ —— -~
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SOLUTIONS FOR THE- WKB WAVE AMPLITUDES-

TO FIRST ORDER. IN 3]tpe

In the previods chapter we obtained the dispersion

- .
relation (34) for ¥~ in a two—fluid plasma correct to zeroth

order in %;ﬁL . From this dlsper51on relatlon we may derive

the phdse speed of the wave to terms of zeroth order in UJ“UPce

Recalling (31) and (32) we may easily establlsh the identity

\)uJ W c}(\(

pc
- N 0-K*V
Using (56) and neglecting terms of order e
| (S
where\ . vwe obtain
?h&e KT :

L= IC* (V)

ana (Vo)

(56)

uo\é\/}

(57)

C

(58)

This expre551on correct to zero order 1n\plm5,, agrees with that

of Belcher (1971) for the outwaxd propagatlnq wave. In order

to solve for themun]nown amplltudes‘%“ %ﬁl” S;E g“&<%§5-
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we substitute this phase relation into (53).througﬁ (55).

Slnce we de51re, at flrst, only the lolatlons correct to zero
W Y

. order in (0? we neglect terms of ordel

. b

This précess yields the following relatlonshlps between the

and smaller.

amplitudes z

- ' A : . 5

& v R SR

,."AvT\\’L(m(;'me\ JAT TP
‘and

ekt

S 2 2 S 1) o8t w0

Substituting (59) and (60) into (52)vand using conservation of
mass (equations (2) an&-(4) and the divergence free property
of Lhe wogooticsZield o Zazo lhteln o osolution clizoCl Lo dero
) . cot
order in o for the unknown amplitude b@>. After some algebra
g ' ' : '

we obtain

(et -_
0= &5} ? (?)\\\_\j\} Q(\. W\ \%% S\“g% 61

~]

l .
and since Yﬁ: Yﬁ_(ﬁf}él this easily integrates to
o o
’E/L+ l* \JA/\)D
%BA;(\“\ SN ! U (P (62)
o ST jw“_-:ﬂo_“ V-SDQ_ K—L’ ( )

an expression first obtained for a one- fluld MHD plasma by

parker (1965). Notice that this case is the most general

because no assumptions about the behavior of V, a stipulation
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we will encounter later, were made. If we do gpecialize to

the case V = V, = constant we obtain
-3 |+ \h
7. No (63)
S-S (%) | e g
\+ h o
: VO'V
as our expre551on correct to zero order. 1an[u> Notice that

this latter assumption implies (by conservatlon of mass) that
f /% .

’ Hav1ng obtained this zero order expre551on, we now seek
to obtain an expression correct to first order in 3? for the
case that vV = V = cOnstant To do this, we must obtain a
first order expression for the phase veloc1ty Lﬁ+ . In érder

to obtain the phase velocity to first-order in gg(iwe substitute
g

S {58) into (3R). This process yields : : o '
= =+ \ \ &_ - (\D UJ X v (64)
v\ 9\. \\'\\) ?c U\)eo
where terms to second_order in d%( have been neglected. Since
me/mp = 1/1837<<1 we obtain
N T \J\ 3 \- S | (65)
Kt L NN Wee < |
_Notice ‘that in the absence of streaming; the phase velocity
e e V8] ' : '
is'modified to first order in~ u) e B TR
, =
W _ \ L& UJ mU,Q' |



which is the standard expression to this order in the two-fluid
model with no/ streaming.

Since we now have a first order solution for the phase
/ _ :

%

V61001Ly, we may compute the fll’.‘SL order relations between the
LW
unknown amplitudes %ﬂ?\ P % e\ ' %E - and %B" which we

originally saw to zero order in (%) in ,(53) through (55) .

. te
_Denotlng
ciy=C= LW VY (67)
h Wpc N

and using (65) we obtain

%\)*:_;, *%‘8“\)(1+€> ,.%\3 ( e\ _(68)
1 K* \J(’L Qﬂ} m\f

%\)2 - _%E (& c) » “%%_ O (69)

K\j Me W\, (\*ﬂ W

ST -+ '_f\—@ SRt - é X\j A, i:@l%\gﬁ

where we now restrict ourselves to frequencies \Q((UJ such

(70%

that & (( 1. In (68) we neglect terms of orderxr QQ . | In

addlLlon, 1n (69) we nc.glect torms of oz.der (m /m )€ . Upon

substltuthn of (68) though (70) into (52) we have (Appendlx 1)

%

to first order in €



2
0= (8893
S dp v

10e Kt (Y3 288 = (4

}(%B*S

L% e

Qy o

2 (am\)g ‘1_(\‘*\%\)%3@\ N5

where we have neglected terms of order me/mp.

‘21

. l@*[&\;‘@})(sg’fﬂ

& (71)

Now upon heglect

of terms of order Vs/V2 when they are multiplied by uj{m%c we

~get ‘
Q:L@fh:&@
2 Wec Ny J Wy,
so that
RIS
Y

v

?3!”

4? .

9\.)/"

N, 0 (72)

[

P 0

|

o

/QEQ!()
<

(73)

Then after some algebra our differential eqguation becomes

(Appendix 2)

~ (390 Lo Lwy
&C\)%\)A\. ¢ .’,LUJ

where, again, terms of order V

are multiplied by UJ /‘%c

(72) , giving
QM%E e (J

 Let us def ine A-r’ =

3]

——

!
d

R

A
(74)

2/V2 have been neglected if they

a

AN

e

r-r, SO that our full éxﬁféééiénNESE‘SB(Y)”ié

This may be easily integrated using

(75)

.
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. Labelling (63) by SB “' ‘we see that
’ e O alea

| S LlWNT A
A - CFros T & |
%\3\“ = 8B, e PN k (77)

ORDER O™ orpen.

It ié convenient (Olbert, private communication) to

introduce a length K defined by
\

—

. h (78)

which, from (72), is Jjust €/\" .  Then (77.) becé_mes
& _on | FAL

[* caveg O™ cioeR.

1

Hence after propagating a distance U 'th'e left (right) Handed
polarized waves will decay (grow) by a far*tor @ . We shall

see that for the case of the solar wlnd /K is extremely

laige. hLeunce the ielative amplitudes of the lefl ald wight

" handed waves are nearly identical for all A¢ of interest.
>._However.for the cases of astrophysical interest when AV is
.extremeiy large, the length K and the variation in amplitude
ﬁill be impprtant° |

In sunmary, tﬁis first order solution for the WKB wave

amplitudes has = been derived under the following main assumptions:

(1) V =V, = constant K ¢

(2). Only terms to first order in' %iQ are keptV | o
"{3) Terms of o?dér'vi/vzlneglected if multiplied by éﬁi;" o

i ammras e A A e Aana
»

4 1 T de 5 s Nevdev v am ) -
It thus ITEPTEoinics a KLasina 4 .:.:u.‘.un_a.uu_fcr CULCWarx Y p}’.‘C

pagating low frequency transverse waves in the solar wind. Under



the first assumption, it is valid meore than halfway .back to the

‘sun. The fo;y of the solution predicts a new observable effect

in the solar wind and is the basis of the next chapter.

23
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GENERALIZED FARADAY ROTATION OF LOW FREQUENCY

TRANSVERSE WAVES IN THE SOLAR WIND

We have just éeen that, to first 6fder iniﬂ/u%c, the wave
amplitudes of c1rcularly polarlzed waves elther glow or decay
after travelllng distance AY . We have ‘also seen that
01rculvxlv polarlzea waves of right and left handedness _propagate
at different phase velocities in the streaming two-fluid medium.
We will show that the former result causes linearly polarlzed
waves to become elliptical (with the egcentricity decrea51ng as
Av inéreaseé)g while the latter resﬁits'in'a rotatioﬂ'of‘
the plane of polarization. These two results are collectively
refelred to by the term "generalized Faladay rotatlon

For  clarity, the conventions usea £01 denoting the handedness
6f circularly ﬁolarized waves will be discussed. For a wave with
electric field E and magnetic field B travelling towards an “fJ

observe the term "left handed" is applied if'the'electricifiéld

r
vector E rotates in a counterclockwise direction when viewed;by
the observer‘r‘For clockwise rotation of ﬁ, the observer calls
the wavé “right handed". This definition is the oné used in
classical optics (Jackson, 1962, Born and Wolf, 1964, Stone, 1963)

and is Lhe one uccd in this thesis. The opposite convention is

commorly employed in pla sma physaco (Spitzer, 1962, Bbyd éﬂéWA‘”mmu o

sanderson, 1369, of¢}, 1962). Having chosen a spherical

coordinate system with origin at the sun, we must choose a
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~

combinatioﬁ 6f variables of the.form ,e>i:§$ to denofe an
- outwardly propaéating left (right)“handed'wave.(Figure 1). “This
justifies the choice (16) for the Gmplitﬁaes. ’With all conventionsf
explained, wé.next describe-ordinarj'Faraday rotation.

In ordinafy Faraday rotation.of'eiectromagnetic waves, the
“difference in phase velocity between left'an&iright‘cifcularly-
polarized waves results in-the»pure rotation of the plane oﬁ

polarization. We define

so that . |

o _ :

P b (et (81)
and |

’ = [T SRR T ISR

LU T
;We:ﬁote fhat the uppér (lower). sign in (80)4corresponds to the
‘left"(right) handed wave under our chosen sign conventibn; In
-accordahée with-classical definitions wﬁere one focuses.attention

-t : e
upon the electric vector K, we make the correspondence

4 3 :
" E* (83)
Ordinary Faraday rotation assumes that at some reference
level r, there exists a linearly polarized wave of the form
7 B Eeoswt EY =0 (84)
which can be decomposed into a left and right cirzcularly polarized

wave of the.form o
| + st ewt)) g o
SRe T Bard) (@)



where E is a real number rc*“*e.;eﬁtlnf\r the amplitude .of the

cm:cularly polarlzed wave and
S“ S VE v\iv (86

. In (85) and the follow1ng, the appeardnce

i
‘where k) = %l“\( N

of the exponentxal implies that we take the real part: of the
expression when we talk about real oscn_l,latlons,., Notlce thaL

at r=r, we have - i A : -

4} . . . . )
E ECostC -k = @ . (87)
as requlred by (84)¢ After travelling a distance &r:r%ro, (85)

N ‘c[%;'(sﬂs:) (S A -
L -Be | | (@.Mﬂ (88)

becomes

where we have decomposed S 1nto terms symmetrlc and anti-

N~ - ~, ~F ;_u,\ £ vy

D Y vl e b - ~— B L

| _EQ.‘(S"'_\,%" " LZ(%+—-%—) , L (89)
" Then denoting |
P L(steg V-t - (90)

and : . .
‘\9‘* Lt ) ' (91)

| Lshev) |

we have at ¥

i (92)
crom which it follows from (81) and (82) that

L ke C{\)Q<>s‘¥ Eﬁ e S'\VL‘\). . (93)

26
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e Slncef} andf[ oscillate in phase at r, thcy comblne lnto a

linear 0501Jlatlon which is rotated by an angle 4) w1th respec£ |
" to the,incident orlentatlon; The phase of'commOn oscillation
“has been changed from its original value at r = I, in the
amount ? (Sommerfeld; 1964). Hence in the ordinary Faraday
effect, when the left and the right handed waves arrive at r)r,
.they have equal amplitude but unequal phéee. Thie fesults in'a |
‘pure xetation of the plane of polarization. ' |

Let us investigate the consequences of allowing the‘leff
and right handed waves to have variable amplltudes when they

-_arrive at r ae well as varlable phases._ Instead of (83) we

will make the correspondence

0t Rt - :
- R AT
. . , + ;

This choice is made because we have chosen %%; as the independent

amplitude (Chapter 2). Let By be the amplitude and § be the

phase for the right-handed wave. Let B, be ‘the amplitude and

%+ be the phase for the left~-handed wave.' Hence the analytic

representations at r are the following

o

\

A . N ,
= B_,{ Cos (f;i wh\% ~BZS'\VL (S.JL\J\) {:\ & ' left

Notice that if we set the phases S and S equalntoreach ethern -
at r, the Superpoeiﬁion of the right and the left polarized
wave results in an elliptically pola137ed wave of qom;—major
- axis Bl + Bz'and semi-minor axis Bl - Bz i This is ea51ly seen
’ A

in Flgule 2 ulnce the © components are a]wayq in phase and the



~ : .
¢ components are m_ways 180° cut of phaoc. Ta‘ki_ng the

case that S - and g are unequal, we rewrite the left handed

' . wave from (95) as

'B 'B Cog(g w’t+g7(,)@ ~% %\VL(% U\)’t+3\1)d? : (96)
_whei:e '\ " __

This process emphasizes the explicit phase difference -3
between the two waves.

Comblnlng the right and lefL handed waves at r yields |

B = E cos(S-wh) +% cos (S u)‘{: Dﬂ’u >

TOTAL l(9>8)
G%ug cos A% Yeos (Stwt)
‘*_(’Ez_%w\ Q%B%\n _w’ts,
RE R s (Srwt) B sinlS o 2) o)
= (R -Bcos ) s (Swt)
i +(-R® 8, Siw %) cos (S~ Ug{)
Tow\n U\* R \ ! QS Wty
(k). o
Tcn“m__ LB-H 3 - .

with
A= El—‘szQos 2%
- Rs ;E&%‘\m A% oy
= ®-BeosAL . |



29

Henco

s
TOTA \—U\eae'BégB-\» (E@J,Q@} ( UAJQ S To(102)

We therefore define

'b i\e -UB(\>

@ +R ,Cos ’17(,)@ -k( E\W’lx\¢ - (103)
and
T -R6.04
= (-B,sw ”\\m *(%_% Cos ! BCb (104)
so that
T ~i[sT oty
Emm_ (bm\—.} os)

As before, the resuivamt ssevliation s €l 1o real part of (10%)

and is expressed as

’BTOT ML = D cos (,S-:‘ UJt) «\‘E S\V\. ( :;—- w tx (106)

Determining the position of (SVWAL.

at Y-wt =0
and th “/;z_ gives us two conjugate radii of the ellipse
of oscillation traced out by (104) as a function of time

(stone, 1963). BY computing at these same two times,

P 3

4
d ! STQTM,

" we deduce that the direction of motlon is LIOWiD{ﬁ‘; , and
‘“procecds along Lhc smalICL of the two arcs. Since the right and
left handed deeg are out of phaqe at l, we should eypect thaL
their superposition leads to a wave rotated by an angle %ﬁ ﬂ
just as in ordinary Faraday rotation. The fact that they are

of different amplitude implies that:tﬁé resultant wave 1is |

|
¢
¥
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ell;ptlcalg rather than linear. (Fagure 3).

In_order to find the angle~*’ whlch the seml—maJOL axis of
the ellipse makes with the S axis; we seek to flnd D, and Eo, |
" the principal radii of the’ellipse; Principal fadii have the
prdperty of lying.on the symmetfy axes and obey the.equation

B, E,=0 -
. - (107)
Let us choose a time t, such that D will ébindide-with So and
T will coincide with 1':’0. . |
—m”\( o) = YB BCOS (S-wt 3’4&'?;31\/» (S-wt.) _
'BTth\\_(t" \ E Bsm(% wJL\J(‘;-Cos (¥ ug{_} o (108)

Using (107) we get

0= (E ‘\33%\\'\% UA{)C,osS us‘f.\

-t

—r\L o) Lcos (S- wt) s (S U\‘%‘Bk

Thus
)

tan Q('&-~uo‘(:°\, o Qb | |
o NER= - (110)

. - N
from which we may determine ?>—h&tu and hence solve for D,

rn'

5.3

and E, by using (108). Then
..A

BQOC{J

(lll)

’&efétﬁiﬁés”‘# ', the angular orientation. Using- (101) and

(108) it is easy to show that (110} reduces to

(112)

tawn Q(Siusjc.,\, = ﬂl\& (_j_Q“/JS
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and thus that

—

S = DCOS(~ ") -\-ﬁ%i\f\(*%') ,
E. = - Dsinly )+Ecm(¥d o @

So N A
. Do.@ - ACOS(*YJ) +%S~\V\('XJ")
: =(B‘+BIC05 2% Y cos X,' + EL.SEV\QXJ.‘S"V‘ Y‘_! 14
(114)

= (R 48, Ycos W
But since D, \/(B + we obtain
0 % v
C S = CDS XJ : L . ' (115)
_ . . , S*__%"'
Thus we obtain the usual Faraday rotation}?:vgt _‘E: which
we derived earlier. A shorter derivation ofb(llS) (Lazarus,
private comunicacion) 4b givel Lu LAPPUnGin L. wiie OCCsniaginily
‘at r is given by ‘ .
—
Z,
¢ - /L= B
' > (116)
which reduces to (Appendix 3)
2/
E: = A Eg;g?_ :
T _ : (117)

™ .
s

\>( Bz

and simplifies using (78) and (79) to

S
- Sech =& »
% K | | (118)

| _ :
Using (65) and (33) to compute SS and S> we form the phase

difference to get the following:



\ e
2 2%
W™\, de

N \
= N\ | .
UJ?O »(\“\\p‘\g 'ZU\) (\S -l-\J \"X (119)

2

o1

©

neglecting terms of order e* . This integrates o

53

g !

2

N e e N

.JL Ve \1 0 (120)
3 1. & \1 ~

fc \10, (\)\L\}p\ N \M\ \{ \ °»<\1* \ A\ \o%(‘ |

the leading term of which is

1
2 .

T o & - v . : _
(:‘l \)A A o | (121)
V@ L

>

where Ar = r - r, is the distanée from thé'referenée_level. Then
from (115), (léO), and (118) we can predict‘the anqﬁlarvoriehta—
tion and the eccentricity of the resultant elliptically polarized .
‘Wave as a function of r. |
-WeAhave seen that when a linearly polafized wave propagétes
in and is convected by a'fwo—fluid solar wind, its constituent
right and left handed circularly polarized combonents undergd
amplitude and phd e changes. Upon'recombination of the right
and left handed wave, we find an elllptlcally polarlzed wave
whose %emlwmajor axis is oriented at an angle 4{ with respect to
_the oxlglnal orlentaLlon of the llneaLly polarlzed wave. We
.shall now con51d01 examoles of ths phenomenon for>casesrofv
interest in the study of the solar wind and in astrophy51caL

contexts.
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ChaptetAS
RESULTS AND CONCLUSIONS

Ordinary Faraday rotation conc¢erns the pure rotation of
the plane of polarlzatlon of high frequency electromagnetlc
'Waves. We have shown that for low frequency waves (u)/@gél) in
a tﬁo~fluid solar wind, there exists both.a rotatlon of.the plane
of polarization and a graduel transition fﬁom linear to elliptical
polarization. Examples wiil be given to tllustrate these con-
clﬁsions.

Feom'(llS)Awe may eaeily obtain-Figﬁre'4 showing the vari-
ation of the eccentricity as a function of the dimensionless
ratio hr/17 . In-Figure 5 we show representative ellipses for
the oases §;=Al, 0.9, and 1/e occuring at pr/% = 0, 0.47, and
1.653 respectively. It must be remembered that for the variation
ﬂof % fo be physically meaningfﬁl'at large r we must not violate
the assumptiohs under "which 1118)-was derived. 1In particular we
must stay well away in freguency from the local proton cyclotron
frequency over‘the ehtire path leogth Qr, We have already
seen (Chapter 2) that a resonance occurs at this freguency when
one transforms to a frame of referencevoo»moving at the wind
ve]ocety V. Fulthelmore, ezamlndtlon of Lle index of refraction
(34) shows that the right hanéed wave solutlon does noL yleld
real values for n beyond(0?¢(Van Kampen and Felderhoff, 1967).

_Since we assume B«vl/r and.u) ~L, we are forced to examine
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- waves of smaller and smaller freduency as we ‘seek to obtain
results appllcable at larger and lalger r. We must ‘also be
careful not to violate the WhB approx1matlon that 1;43 1. We

"have seen in (58) .that the zero order phase veloc1ty is

UAN \
%& =‘Q+UA from which it follows that X“ E} °2ﬂ(\?:;\.

Under the»assumption that V =V, = conétapt it is easy to show.
-that v, ~1/r. So if we are at large r, we_muét choose w) to be
very small in order not to violate 3i}<k 1 locally. But. this
means >\>>1, In order not to violate the WKB applox1matlon the
scale length h must be enormous. |

With‘thése~thought in mind, let us.examiné the béhayior of
thé eccentriéity'for observed solariﬁind pafameters. We choose

the reference level r, at 100 solar radii (0.46 A.U.) so that

F— o

rie conort oo Vo= V. — condlawe is mlce Iolnsten LAt slremved o
average solar'wind velocities, we take this constant equal'to'

_406 km/sec (Lazarus,'l96§)n Wevtake a field at the sun of 2
gauss, giving a reference level fiéld oflio gamma (1 gamma=

lOF5 gauss). We set V; ='lOd kﬁ/seqé»since the observed

Alfvén velbcity at’ 1 A.U. is approximately 50 km/sec (Belcher

and Davis,'l97l), -For avane'having an inertial period T of
l'ﬁinute, we obtain from (78) that(’~l461 ~ 68 A.U. Computing

the distance Ar at which % decreascq LO 0. 9?'y1elds Ar ~32A.U0.,

.. -Hence for a reasonable solar v1nd case, the wave remains

linearly polarized over a very large range of r (the orbit of
plute is 39 A U.).
We can alco examine the behavior of the angle of rotation

through which an initially llnearly polarlzed wave turns as it



35

duce d
Eee‘:froavallabl

‘propagates in and is convected by a two~flu3d solar Wlﬂd From

(121) we expect (from the w= dependence) that waves of longer

inertial perlods rotate less in the dlstance Ar than waves of

T ——

shorter perlods° In Plguée 6 we show the angle of rotation ¢’
(detelmlned from (115) and (120)) as a function of distance for
waves of inertial pen&ods of 3,4,5,6,7," and 8 mlnutes. The
same reference level parameters of V, = 400 km/sec, V; =‘>100_klm/sec‘
Boun = 2 gauss were chosen. A striking featurexih Figure 6 is the
linearity of the rotation with distance,'as‘in ordinary Faraday
rotation in an infinite homogeneous medium. fhis can easily be
explained in physical terms upon realization of the relations
between plasma density and magnetic field 'in our assumed model.

The radial background magnetic field varles as 1/12(-50 that

Y o "}/:;,.2 - W .2

St = x2S Tlheao saee wmight expecl The ~Tount of

rotatlon to 1nc;ease more rapidly than r, since «) comes closer
“and closer to(Qfc as r increases. But the assumption that V = -
'Vo = constant constrains the density to fail off as l/r2, SO
that the Alfvéﬁ velocity falls off as 1/r. 'Fortuitousiy, this
decreacse in Va_with r exactly balepces the inerease'in UU/&%Q
with r. This immediately follows by rewriting (121) in terms of
the local Alfvén velocity and»locai~cyclotron frequency. When

expressed in these parameters, the leading term in the expression

' . w?* \ -
- for_the rotation -angle becones %qug Yﬁ ANY . The cyclotron

frequency varies as B, i.e. W, & l/rz. Assuming V = V, = constant
constrains the density to vary as l/rz. Thus the sqguare of the
.Alfvén velocity also varies as l/r2. Hence.the ratio Vi/“%cl

constant and the rotation is predominantly linear with distance,



36

as in OLdlnary Faradayvrotatlona Fioure 7-shows thé dependence
of rotation angle (measured at l A\U ) upon the square of the
frequency measured in an 1nert1al frame for the solar wind case
~in Flgure 6.

In summary these calculatlens predlct that llneally polarized
waves will gradually become elliptical as they propagate in and
are conveqted by a two«fluld solar w1nd.~ In addition they undergo
Faraday rotatien so that the semi-major axis of the ellipse of
polarization is turned through a well-defined angle. In principle
this effect can be observed if at,some distance r, there exists

llnearly polarlzed waves which do not theloaftel danp lnto

thermal notlons as they travel in the two fluld medium.
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Appendix 1

Equation (52) consists of 12 terms with the upper (lower)
sign representing left (right) handed polarized waves. Using

(68) and substituting into the first term of (52) yields

g[S 2 %\1 - ~dtiang \, 887, 72 EB ALL
A (1% ) ( 63 ( |
b iy

which becomes

18 e 5et (S
~Ar : \l '”'"(\-*d A }'":: + ,,i_ \"56\ - : .

_ ' .
Neglecting terms of order €& and C\)G‘ yields

/V %% 2 (‘m“\ (%R*\ I \rﬂ \ %(3 9?&?»

-‘."‘Tif““\ - ukw . Y ;—J-— I$o~ .

\‘ . i- ’THJ o QH\P J() 2t \ o %\\JJ ov
4ﬁf %f oF BV 7@59 | - |

Using (68) in the second term of (52) yields

_/TTY\fWﬂ (%\\‘( \ "yn\m {:’(\{\3: (QP ) \-QQ 4 \}fz (%%&}2‘ (AL.4)
| B J B

—

where terms of order Ql have been neglocted

Usa.nq (69) we ]TlOLl(‘(, that tho c*ubC‘tLtuonn C*?"C 1mplle"-
%\) —¥ %“ In addition, the LhJ.ru term of (32) may bo obt_amn@d
from the fl]..:t by the substitution me—wm’p. Hence the third

term of (52) may be obtained from (Al.3) using these substitutions,
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The result is

| 30N
~hwom,\ Y"Q’ SR (%%\ }QGK gﬁ 2GR
| zﬂg oF A’“f Aj) ¢ bup of (A1.5)

gc_ ( g \ n (%Pf\}
ArTUD JP ?"F ¢ 4T g
Similar considerations apply to the fourth term of (52) which

may be obtained from (Al.4) . The result is

~ Ao e\{; s\ 3’1-: ko) (%\@ (%EB e Jf\ (%g) (A1.6)
v
| T |

The fifth and sixth terms are straightforward. The seventh term

follows eaSily'from (70). The eighth and tenth terms add to_give'

= DU:&%E:_%

C e Tacey e
TSR e N (%b ) (81.7)
§ ) 4

ﬁsing (70) . The ninth term is

ricsy’ 2 g - 188" 2 (2, C8")

N
- W= W) w LY L (A1.8)
(2eY” ar KE g:g 558

" where (70) has been used. Using (65) for the phase velocity

and taking V = V, = constant yields
A é\! \ 5 A
~(SB \ ( +C\ ( o< _% (\) \]\ % ‘C\\] %R ?g (A1.9)



But since
~ T — (Al.10)

we obtain

op N ‘ B —g‘ RN
() ( ﬁ‘? ﬁv a\f* SR ~\Agg.:\ug «“.\;A%B_ 2.

\ .
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3 [59% 3( O\&) i(; T F)l B\qlk %% )‘X (Al 11)

for the ninth term of (52) . The eleventh term is easily shown

to be
"“A‘.: S ) —\: A~ ‘ |
“‘\)%\: D—:{\g" = \é[z {Z""g% % (&\Q—Z—_\‘&%“ (Al.12)
- . < CJ\? _, . :
while the twelfth is
N (% Vo (m\l( 2
- A — - , (A1.13)
¢ 5 cr ¢\ KE 2B > |
V“\US i
Both of these ttrms may be neglected since M L(g . Adding

C"?..
up all these terms and grouping terms of like order yields

O= E/mvm\\%v 3}}@ +%m\\f\\ o&%) éﬂ A m"mi(\)%&) 9%‘3

Avp o0 Tl O

.] (—4 \Hllfr\m%\)

wlnmw\ R4} ap \4@&\) (ERIREITINA AR
dmp JQNX 2¢ Y Xz ¢ R? §



+9.€sz Ar“\'\\\'\\\‘l loety } E o ,A\J%% RIS Av\mﬂ\} (%B) BPK

X B? : 4 UQ 5\(’ ‘ 4“(3 9? S
43@{4; AN %\?jzb g@~ -~ 4“mm€\) (%% 5
éﬁe‘ oY : 4r€ ar b\n |
oL < ‘
' a\~K~ b mmA\)( e 5& %AMG\) U SE)  ge o Ao Ve
L300 e o (58" 0 T e
| {zzg S8 + A 3—(\\4.«\),)‘3%%*-3_%%%&\: (58T 2
| A0 ¢
T AV, (GetY £ ot -
.Jc _,5\715 E \)A%B 5;““ X +\) ?)B 5 YQ(\)««\H )S\%
"\" i—“(’\)dr\\h\ 5%;5}8\&\ QS Ry Q\/t\)b\}%» 3\?8%—1 B _ (A}L.‘JA) |

as may easily be verified. . The terms in curly brackets are of
zero order in (3 while the others are of first order. - Combining
. oc .

the terms in curly brackets in (Al.1l4) we obtain

5. dinlem) Vo8B 2 ¢t & (ﬂ(ﬁme\\}‘(og“fl o0V (sety
4rp 2 | - bap 2)9 of ¥ \Bz.

LRy . - + *: : |

? \,\ 6 §~\l z% Y\} - (AB) \}_ b%})@x '"_\)A%% %X%tk (11.15)

Combining the terms in square brackets in (Al.14) we obtain

. ch 4\\f\(m m@\\go RS hZH’m WH\')\\(%@X op
bnp or ¢ fmp R e



+ 4\\&(‘{\\ -~ \\J \ _(._%%[3 '& g%*: %‘:&8_‘; - \JA_(EE'YL 0
v (S8) v ( J«\lB LTy a4 e
~ > \ (SR™ A
P ﬁ":g £ 88“38%{\%&&%&%%%1 |
\ 0 ¥ (Al1.16)

-—/“T\’L o™ \\)(Eﬁ; 1

Simplifying (Al.15) yields

41 ..

{ “(\)T\\QB 38% AR av(EeD) 1 (31.17)

ap - o¥¢ e
Neglecting terms of order m / mp in (Al.l6) yields

2e [+ (4:0) $8° 2 x%’ £ (- 5%y » V(e }
S

h | Al.18
)C'\_ £os 0N /r~¢~\-¥\"2~\: ( , )

too— v\ i el

¢ LT h 7T T

which is the first order term in (71). From conservation of mass

‘(the'sum of (2) and (4)) we have _-

n'z _ . o ..
?Q\ = COWSTANT : (A1.19)
But since V = V, = constant we get
Lop \
~N . E L S (Al.20)
) ‘ Qj) DT 'S |

L URT 90N dAn (A1 17V we aot
(A1,.20) in (AL 17} we oot

| g A PP
Er D\,(\h-\ip\\%% %\q%% «(2\ A-J}\\ (%%x) Q}) %E\'.‘X _ ”(AJ‘_ 21)

which is the zero orxder term in (71)
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Upon substitution of 73)'into (71) we get

t \ otk Aot ant
0= (88 32 (g -2 . ) 38 g\n&as&e[ﬂ:(\rﬁ\-\z)%e 23R

Af ar
3! L3Py \J,\) N 5\;? e ( \) \;) (n2.1)
=0 3¢ 17X
‘which simplifies to _
O (o\‘s D v
o . X\\ A2e[ X0 %B
m M(B\ A - a(\ \Q%R 3 1[ ()
P (v M - % \!(%%*3 (%53 (A2.2)
2( B\”W (“BB v Z e |

Using (Al:20) ih the above yields

\’G‘j ’Cvu\m L) BB 2 g% chb (v, \J)%% ASV&

*(\1;\!93(%@% s V(R X | (82.3)
T - -~ —
R h [ T4 ¢ | .

Thus

e "\“ 2 : B | -
= ""(%\\\“)“\(A )((3?3;5 ~'QCU~%~\JA3 %B{ %E%' -\-IQKJS(\JL“\'Q%EJ: g}gg\h
s S ,(033 o\ (S8 X | (A2.4)
e & p _ ._ - _
Hence R
N A | N \':{‘\)‘\




So

| BN | |
U B TV BN ALY | B
QNN T4 s VeV Sk (82.6)

NN

" Neglecting terms of order ¢’ yields

S(3N) ) SN-7, - Cogt
(399,) TX“@ Ay _igdvg\:g..rgm%\) e
N DL

which simplifies to

. |1 .
N EREANE R EPEANS A\ ULy | P -
W Ll e e (=2 SR @z
Q—,(\) \'\)p\\ { {%“ + Z\“\\)\J}}""‘\\)b\. 'a\r\ | )

Using (72) we éet

- VR \ | A
(3049, L\J\ L LN, (13

-
LAY X
-~ S 2 Kl ‘ (A2 . 9)

and neglecting terms Q@ order Vi / Vz if they are multiplied by
U)hﬂ?g we obtain
"(%QJ\‘\}‘, +-
~ ‘>\~\U3\)A\ 3;9 R~ (A2.10)

= N —~ = YV

AN * T AL, T v 2y

}which is (74).
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Appendix 3

Equation (115) may be derived'with é miﬁimum_of élgebra

by using the following method suggested by Dr; A:J;LazaruS:

Let us comulne a left circularly polarized wave of Lhe form

r = Bl exp(1u3t) with a right circularly po]ar¢7ed wave of the
form r ='B2 exp(~iu3t). For outwardly propagatlng waves, the
sence o$ rotation agrees with the convention chosen in this
thesis. Let the right circularly'polarized wave differ.in phase

S
from the left by 2% . The resultant os scillation is expressed as

it ~m\t~*~"\>f ‘
% e | \3 c : (a3.1)

mt

(A3.2)
pefining x (M{‘ VV we obtain o
[
V= e (%e +Vc&

- e'F <K\s§% (&%e ,_;% | 8- e %S
‘ s (A3.3)

Y <
C (%(J"%z\ Cos \()/ t A (B\"%E) %.\‘ﬂ\é 5
“Now suppose that the phase differenae»ZﬁfiS~zero. -Theh the re-~ ... .

cultant oscillation has the form

"= @\*@Q C,QS mf + L.(Bf@l} S_’M Uft | (A3.4)



which represents an elliptically polarized wave of semi-major

1 2

axis B, + B, and éemivminorgaxis_IBl -~ B7E . . The same result
. . ‘ . S . ' v
was obtained in (95) and illustrated. in Figure 2. When 2% is

different from zero, (A3.3) represents'an ellipse rotated by an
©angle Kjwith respect to the é9 axis. The same result was ob-
tained more laboriously in (98) throughf(IIS).and'illustrated
in Figure 3. | o

We now focus our attention on the eccentricity of the el-

liptically polarized wave. Equation (116) may be put in the form

? =»’F53‘E;‘

‘ o (A3.5)
From {(113) we have

U 1= .

D, = Deos -Esiny | |

E.= Dsmt +Lcos - oo

from which it is easy to show that

-Z 2 . ' > ..::
DEE, = (0% ) cos 2L -ADE sin 10
(A3.7)

and hence that

2 {

gl (D% ) cos 2% - 2D T sin2%

(CE ~ .
. '2.. o3 S “/‘ (A3°8)
: D COSI,\;' y B sin? )f,' - D' S 2K _

Wow from (105) and (L0Ll) we have the following

IR &, cos™ 2 + ABR s 2L

R , ! 2 4 - I . PR -
(¥, BT3B R cos2) cos i + (BB 28R cos 2) s

‘ - 3 _ (A3.9)
% 7».,\3‘%?_ 8 \V\L (2,“7;‘ 3



46.

which simplifies to

—— o (A3.10)
B AR, -

~ Notice that if Bl = B2 then ? = 1, which means that the ellipse

degenerates into a straight line. TIn other words, we recover
the case of regular Faraday rotation of a linear polarized wave
r _

rotated by an angle L with respect to the incident orientation.

From (79) we have

_ : _A¢ '
A -
%E“ = %%P e (a3.11)
1> oroer. O seper

The upper (lower) sign corresponds to the left (xightf hand mode.

Beoord D e 0% ond {uDy L tane 0 Dooane Bw R L eny
- IR T : P2 T T Y
| a¢  -av
Bﬁ-@l = %Ecﬂt‘omg@ (e ™ se ?“)
7\ %gom()@m Cos\m % | : (a3 .12)

And

§ ?
3.8, = 98

Thus from (A3.10)

R— ”.‘,_' . ] . ] . \ - - P ) R v . ) e R -
- - LA
T N = Sech T | (A3.14)

which is (118) in the text.
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FIGURE CAPTIONS

Figure

1 Spherical coordinate system with origin at the Sun. An
outwardly propagating wave travellipg towards an observer
is represented_by the wave vector k. The wave is "left-
handed® since I rotates counterclockwise. :

2 Representation of a right circularly polarized wave (RCP)
’ of magnitude B, and a left circularly polarized wave of
magnitude B, (With B,{ B ). The waves are taken to be in
phase and afe propagéting out of the page. The ellipse
shown is the superposition of the two above waves.

3 Superposition of right and left circularly polarized waves
when they differ in phase. The rotation angle ¢ is shown
relative to the © axis. Conjugate radii D and E are
shown along with principle radii D, and E,. The wave is
propagating out of the page. :

A o N e T ? o~ ,:_'-A‘[T. P i e LR e B R e e P e B S AR L

T — 4‘4.- v ;_._‘ » -
as a function of Ar/¢ .

-5 EllipseS'with varying magnitude of eccentricity é . f = 1
“correspouds to the reference level where a linearly polariwed
wave exists. = (0.9 corresponds to Ar/K = 0.47. ? = l/e

corresponds to Ar/¥K = 1.653.

6 Rotation angle 4’as a function of distance for waves having
inertial periods of 3,4,5,6,7,and 8 minutes. The reference
level is indicated at 0.46 A.U.

7 Rotation angle 4’observed at 1 A.U. as a function of W

for the waves of Figure 6,
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e

. . ‘ F = TP Y
B.=B, @@?W | B.= B.cosan

e

bj”—’: “"P m,m"
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